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Outline
• Overall Study Aim:

– Identify key factors involved in the use of alternate spectrum 
in various bands for a future integrated CNS data link 

• Background
• Overview of current related efforts
• Key factors in spectrum selection
• Desired new ADL system attributes
• Example spectral regions
• Summary
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Spectrum Shortage or Not?
THE END OF

SPECTRUM
SCARCITY

NEW TECHNOLOGIES AND REGULATORY REFORM 
WILL BRING A BANDWIDTH BONANZA
BY GREGORY STAPLE & KEVIN WERBACH

IEEE Spectrum Magazine, March 2004, pp. 48-52
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IEEE Spectrum “Bonanza” (2)

• No aeronautical
mobile bands listed

• Yet “pressure is on” to 
“free up” parts of 
dedicated aeronautical 
spectrum
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IEEE Spectrum “Bonanza” (3)

• Key technologies for spectrum “bonanza”
– Spread spectrum
– Adaptive antennas
– “Mesh” networking (relaying)
– Software Defined Radio (SDR): adaptive time/freq/space

• Key regulatory revisions
– Re-allocation (incumbent, low-use mobile, high-use)
– New use and/or leasing by incumbents
– Spectral sharing (including unlicensed)

START   150 MHz                                    STOP   1.150 GHz
RB   3.00 MHz             VB 300 kHz             ST   13.89 msec     

RL    0.0 dBm
ATTEN    10 dB
10 dB / DIV
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…and from DARPA, NSF

• DARPA’s Advanced Technology Office 
– neXt Generation (XG) Communications program
– “All spectrum may be assigned, but

…most spectrum is unused!”
– “XG is developing the technology and system concepts for 

DoD to dynamically access all available spectrum”
• NSF’s Computing & Communications Foundation 

Division
– Networking Technology & Systems (NeTS) program
– “Explore dynamic spectrum management architectures and 

techniques”
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Motivation
• Need for additional communication capabilities in 

civilian aviation is well documented  
– FAA’s National Airspace System (NAS) “modernization 

blueprint” [1]
– Numerous papers from recent professional conferences 

• Digital Avionics Systems Conferences (DASC), e.g., [2], [3]
• Integrated Communications, Navigation, and Surveillance (ICNS) 

workshops, e.g., [4], [5]
– Growth of passenger communications is also expected [6]  

• We began with premise that new capabilities are 
unquestionably in need, for the benefit of the aviation 
community.



Ohio University 8

Study Focus
• Key factors in spectrum selection for aviation data links
• Systems that can deliver VDL-or-higher data rates
• Aeronautical spectra (C, N, or S)
• Two or three lowest layers of the communications 

protocol stack: 
– physical layer (PHY) 
– data link layer (DLL)
– medium access control (MAC) layer
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Potential Spectral Regions

• In principle, Vast amounts of unused spectrum, at 
frequencies above those in common use 
– e.g., V band ~ 45 GHz
– Technologies are not presently available to economically 

deploy communication systems in these bands   
• Propagation conditions favor use of lower frequencies 

for aeronautical transmission ranges of interest
– Tens of meters to a few hundred kilometers

• Restrict attention to frequency bands below Ku band (12 
GHz),  for A→G and G→A communication (higher f’s 
possible for satellites)
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Potential Spectral Regions (2)

• For the lower frequency limit, we selected the upper 
limit of the HF band (lower limit of VHF band),
approximately 30 MHz
– To support multiple users with data rates ~ 100kbps or more 

requires more bandwidth than available in HF band and ↓
• Hence, we focus on VHF, UHF, and SHF bands
• Also most likely that any new ADL system will be 

deployed in spectrum already dedicated to aeronautical 
applications, either communications or otherwise.  
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Potential Spectral Regions (3)

MLS not deployed widely.  Technologies for this band less mature, 
but very wide bandwidth available.  Propagation conditions may 
dictate use of directive antennas, and/or use in shorter range 
conditions.

5-5.25 GHzMicrowave 
Landing System 
(MLS)

Existing transceivers very high power, making coexistence very 
challenging.  Commercial use of military spectrum is likely a large 
administrative and political challenge.

225-328.6 MHz
335.4-399.9 MHz

Military UHF

Developed in FAA Capstone (ADS-B) project. Only two channels 
currently; design modifications needed for increased data rates.
Peer-peer user addressing not currently available.

Two 1 MHz 
channels:

971 MHz (CONUS), 
981 MHz (Alaska)

Universal Access 
Transceiver (UAT)

Only ≅ 5 MHz spectrum, but good propagation conditions.  
Coexistence with tone-modulated ILS signal is biggest challenge.

329-335 MHzILS Glideslope 

FAA choice for digital voice & data.  Data rate limited.  Maintaining 
only 25 kHz channel BW ⇒ only moderate data rate achievable.

118-137 MHzVDLM3

CommentsFrequency 
Band

System or 
Spectrum
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Current Related Efforts: NEXCOM (1)

• NEXCOM is (quote)
– “FAA’s radio system of the 21st century.  … 
– An analog/digital system incorporating latest technological 

advances in radio communications  
– Will provide capability to 

• accommodate additional sectors and services
• reduce logistical costs
• replace expensive to maintain VHF and UHF radios
• provide data link communications capability
• reduce A/G RF Interference 
• provide security mechanisms.  

– When completed over 46,000 radios will be installed 
throughout the FAA system.”
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NEXCOM (2)
• Operates in dedicated aero spectrum at VHF 
• Uses existing FDMA channel structure
• Modes 1-3, plus analog 8.33 kHz AM
• For mode 3 (TDMA)

– Maximum data rate is 19.2 kbps for ALL 4 time slots
– Differential 8PSK modulation
– 3 or 4 time slots
– Time division duplexing
– Point-to-point A→G and G→A, plus G→A broadcast
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Current Related Efforts: SATS (1)
• Small Aircraft Transportation System (SATS) (quote)

– “… project's initial focus to prove that four new operating 
capabilities will enable safe and affordable access to 
virtually any runway in the nation in most weather 
conditions.” [12]

• on-board computing, 
• advanced flight controls, 
• Highway in the Sky displays,
• automated air traffic separation and sequencing technologies.”

– Last one relies on efficient and secure CNS
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SATS (2)
• Demo done (NASA Glenn) using VDL4
• Next stage planned is transfer of demo system to  

SATSLab and AIC for experimental evaluations and 
commercialization.  
– May require substantial changes to demo system in terms of 

components, capabilities, and modes of operation.  
– Final SATS/AI (even lowest few layers) likely substantially 

different from demo system, in terms of
• frequency band of operation
• available data rates and channel bandwidths
• number of simultaneous users
• range and spatial discrimination
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Current Related Efforts: UAT (1)

• Universal Access Transceiver (UAT)
– Mostly applied to surveillance applications, in particular 

Automatic Dependent Surveillance—Broadcast (ADS-B).
• Successfully deployed on a trial basis in Alaska.  Plans for its use in 

contiguous US, and standardization, underway
– Fairly simple (⇒ robust) binary modulation, to reduce aircraft 

radio costs
– Like VDL3, uses time slotting, and burst transmissions

• Aircraft transmissions not assigned to slots--randomly accessed [14]
– Current UAT transceivers canNOT provide individual 

message addressing and true peer-to-peer connectivity
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UAT (2)
• Requires a dedicated 1 MHz channel
• Time division duplexing
• Maximum data rate 1004.167 kbps for ALL users 

(Total) with no packet collisions and no overhead
• Practical throughput ~ 0.36(0.82)1Mbps ≅ 295 kbps for 

all users (Total); 820 kbps maximum if synchronized 
(coordinated among all users)

• Point-to-point A→G and G→A, plus G→A broadcast
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Current Related Efforts: AIC (1)
• Airborne Internet Consortium 

– Recently formed group [9], also termed the Airborne Internet 
Collaboration Forum

– Members from aviation industry, government organizations, 
academia

• Group purpose
– Encourage the development of open systems architecture and 

standards for aviation digital communications
– Foster and promote internet protocols in aviation
– Develop intellectual content to guide and influence public and 

private investment
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AIC (2)
• Group meetings have sought participation, discussed 

group’s aims, and outlined items for a workplan
• Nascent workplan items of direct relevance to our work:

– Integrated CNS requirements
– Architectural candidates, trade-offs and evaluation
– AI system design
– Test and evaluation
– AI design and use of VDL, SAT, 802.11…
– Applicable technology assessment
– Applicable communication standards assessments.
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Key Factors in Spectrum Selection

• Propagation
– Best-case, “free-space” path loss is 20log(4πdf/c) dB, so at a 

given distance, path loss increases by 20 dB per decade in f
• Example: d=10km, PL=92 dB at f=100MHz, PL=112 dB at f=1GHz

– Other attenuations (absorption, scattering, etc.) also generally
increase with frequency

– Conclusion: For a given amount of transmit power, link range 
is maximized if carrier frequency is minimized
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Key Factors in Spectrum Selection

• Technology
– Desire hardware/software, systems, subsystems that
are “readily available,” or “nearly available”
– Re-use of existing techniques, software, hardware is 

economically attractive, and can optimize reliability
– Examples: 

• Wireless LAN technologies developed for use in the ISM bands (2.4 
GHz, 5.8 GHz)

• Cellular technologies (800-900 MHz bands)
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Key Factors in Spectrum Selection

• Spectrum “Availability”
– CAN we (are we permitted to) use a given spectral region for 

aeronautical applications?
• Regulatory constraints
• Existing users of the band, and existing systems

– New ADL most easily deployed in systems already 
designated (reserved) for aeronautical use
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Key Factors in Spectrum Selection

• Waveforms
– Which physical, medium access control, and data link layer 

techniques are best suited?
– For multiple access: FD? TD? CD?
– For robustness, security, spread spectrum very attractive
– Advanced processing can be used to enhance performance

• Adaptive or high-gain antennas (easiest at higher frequencies)
• Forward error correction coding
• Interference cancelling
• Equalization/RAKE for dispersive (multipath) channels
• Adaptive transmitter power control
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Desired ADL Attributes

• For widespread acceptance, ADL system must offer 
capabilities not present or not fully supported by 
existing systems.  

• Generally ⇒ New ADL system 
– Should offer higher Rb than existing systems
– Should be able to serve large # users “simultaneously” in any 

given geographic area
– Geographic area (range for air-ground, ground-air, or air-air 

communications) should be as large as possible
– Connectivity should be ideally peer-to-peer
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Desired ADL Attributes (2)
• Allow wide variety of data rates & data traffic types, 

with differing requirements on QoS (latency, integrity )
– Variety of message rates would enable ADL system use for 

multiple purposes, enhancing acceptance.
• Last, system should be reliable ⇒ redundancy, and

should be secure in several ways
– Difficult to spoof
– Difficult to eavesdrop upon, for privacy reasons
– Difficult to disrupt or overload

• Finally: standardization essential
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Note on Spread Spectrum
• Use of spread spectrum noted for security advantages
• Spread spectrum also of interest for

– Robustness (to multipath, interference…)
– Popularity

• All new cellular systems are spread spectrum
• Wireless LANs are spread spectrum
• All secure military systems use spread spectrum
• EUROCONTROL experimenting with spread spectrum
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• This has focused some of our 
work on analysis & simulation 
of performance of SS
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“Macro” Diversity
• Use of different frequency bands simultaneously, to 

improve performance, availability, and data rate
– Adaptively utilize all time/frequency/spatial dimensions

• Two limited versions
– Adaptive “band hopping”

• Select whatever band is available, as needed
– Scheduled “band hopping”

• Example: use VHF band for long range, lower data rate messages 
during en-route transmissions, then SHF band for short-range, higher 
data rate messages in terminal/surface areas
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Example Spectral Regions (1)

• ILS Glideslope band (~329-334 MHz)
– Good propagation conditions
– Moderate bandwidth
– Coexistence with ILS needs further study

• Orthogonal allocations
• DS-SS spectral overlay

– Mostly available technology at RF
• VHF band (current 118-137 MHz) 

– Good propagation conditions
– Moderate-to-large bandwidth
– Coexistence with AM, VDL big issue, i.e., supplant VDL?
– Mostly available technology at RF



Ohio University 29

Example Spectral Regions (2)
• “UAT band”

– Acceptable propagation conditions
– Moderate bandwidth IF the channels can be obtained
– Coexistence with UAT and JTIDS

• Orthogonal allocations
– Mostly available technology at RF

• Military UHF
– Similar to UAT

• Acceptable propagation conditions
• Moderate bandwidth IF the channels can be obtained
• Coexistence with existing systems
• Mostly available technology at RF

– Biggest issue: civilian use of military spectrum
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Example Spectral Regions (3)
• MLS

– Short-range propagation conditions (unless high-G antennas)
– VERY large bandwidths ⇒ high data rates, large # users
– Coexistence with MLS signals

• Orthogonal allocations
• DS-SS spectral overlay

– Mostly new (and lower transmit power) technology at RF
– Added motivation: since spectrum being “coveted” by other 

(non-aeronautical) entities, USE it or LOSE it!
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Summary

• We considered a number of potential spectral bands for 
use in a new aviation data link system
– Required that we also consider a number of existing 

aeronautical systems
• One obvious conclusion (not new!) 

– Existing aeronautical spectrum inadequate to satisfy currently-
projected communications demand for the future, using 
existing systems.  

• Clear need for development of a new ADL system to 
provide SATS, Airborne Internet, and/or other CNS 
services
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Summary (2)

• New services would operate in conjunction with
existing services, not as replacement for all existing 
services, particularly during transition(s).

• For moderate data rates and good range, ILS-GS band 
could be suitable for a new ADL system

• For airport surface and terminal airspaces, MLS band, 
with its capability for large data rates, is most attractive
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Future Work

• Extend analyses, simulations for ILS-GS and MLS
– Better channel models, spatial variation, etc.

• Waveform and MA design for MLS
– Prototyping and testing for surface/terminal communications 

and to maintain aeronautical spectral rights
• Cooperation with radio manufacturers, Airborne 

Internet Collaboration Group, NASA, FAA, etc.
• Determination of feasibility of using military UHF 

spectrum
• Multi-band analyses
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Questions?
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Backup Slides
• General list of info used as inputs
• Specific system info used as inputs
• Some ILS-GS and MLS technical results

Tall mountain to climb…
(Everest)
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Task Review: Task 1, Study Inputs
• Spectrum Availability: comprehensively, consider

– Users of the band
– Geographic regions for systems?  Spatial re-use rules?
– General concept of operations for each system
– Communication link & waveform parameters  

• Transmit power, minimum acceptable received power, & signal 
quality requirements (SNR, SIR, Pb, etc.)⇒typical/maximum ranges 

• Spatial discrimination (i.e., antenna directivity)
• Typical link budget propagation models used for system planning
• Modulation, FEC coding, Multiplexing, Multiple access

– Spectral characteristics
• Required spectral mask for each band
• CCI, ACI and requirements on spurious emissions

• Likely will NOT obtain all this info for any system!
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Task Review: Task 1 Inputs (2)
Table 2. Existing System Parameter & Feature List for Four AI Candidate Spectral Regions.

Two 16-symbol words/slot36 bit preambleNA12 bit preambleSynchronization Seq.

3 or 44000NAvariable# Timeslots/frame

120 ms1 secondNA---Frame time

D8PSK, with RRC pulse 
shaping, α = 0.6

h=0.6, ∆f = hRb = 625 kHz (900 
kHz in practice)

DSB AM tone mod: two tones  
±90, ±150 Hz from fc

DBPSKModulation

With assigned channels, full Rb
available

Degrade by 64% (multiply by 
0.36) for MA (S-ALOHA)

NANAMulti-User Capacity: 
contention effect on Rb

19.2 (192 sym/30ms burst)
(NOT counting address info)

Air: 701.75;  Ground: 921.51
(Counting user address as data)

NANAMax. User Rb (kbps) per 
timeslot

≅ 31.5/16.8 = 1.8750.714NA≤ 1Spectral Eff. (bps/Hz)

25 kHz~ 2 MHz?300 kHzRF channel spacing ∆f

Unknown: likely re-use factor ≥
7

Unknown: likely re-use factor ≥ 7Since short range, full re-use 
possible; ∆f spacing 

Since short range, full re-use 
possible; ∆f spacing

Frequency planning 
requirements (re-use)

00Uplink transmission onlyUplink transmission onlyMinimum up/downlink ∆f

Time: dedicated 
uplink/downlink slots

Time: dedicated uplink/downlink 
slots

NANADuplex method

25 kHz~ 2 MHz
(1 channel)

300 Hz~ 300 kHz?Minimum total frequency 
band for operation

31.51004.167NA15.625Channel Rb (kbps)

TDMA (polling & rand. acc.)TD (~S-ALOHA)NANAMultiple Access (MA)

B90 ≅16.8 kHz1.4Rb300 Hz?Approx Chan BW (90% P)

---1---200 in 5.031-5.0907 GHz
+ 198 more, up to 5.15 GHz

# Channels

118-137 MHz960 – 1215 MHz329-335 MHz5.0 – 5.25 GHzFrequency Band

VDLM3UATILS-GSMLS Parameter
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Task 1 Results: ILS Glideslope Band
• 2 coexistence options w/tone-modulated ILS GS signal

– Avoidance: utilize adjacent frequencies
• Narrowband or Spread Spectrum (DS or FH)

– Spectral Overlay
• Direct-Sequence Spread Spectrum (DS-SS)
• Power balancing between signals
• Protect DS-SS via ILS-GS signal cancellation—easy for sinusoids
• Protect GS via nulling transmitted DS-SS signal at GS frequencies

• Disadvantages to use of ILS-GS are
– Limited bandwidth
– For SS in overlay mode

• Complexities (notch filters and/or interference cancellers) if ILS-GS
sensitivity can not afford small degradation

– For SS in avoidance mode
• Very good filtering
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Task 1: Two SS “Modes”

• Depiction of power spectra in two modes
– Overlay
– Avoidance

• DS-SS (possibly multicarrier)
• FH-SS

f

ILS-GS
tones

DS-SS or FH-SS“avoidance”

DS-SS “overlay”
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Model for Analysis: ILS-GS DS-SS
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Effect of GS on DS-SS, Example 1

• DS-SS Pb vs. SNR, with JSR=PGS/PDS a parameter

• DS-SS Rc = 5 MHz
• DS-SS Rb = 5 kbps
• Equal center 

frequencies

1

0 dB
6 dB

10 dB

0

1

10-2

10-4

10-6

10-8

Pb

5 10 2015 25
Eb/N0 (dB)

JSR=-∞ dB

15 dB
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Effect of GS on DS-SS, Example 2

• DS-SS Pb vs. SNR, with JSR=PGS/PDS & tone phases 
variable parameters

• DS-SS Rc = 5 MHz
• DS-SS Rb = 50 kbps
• Equal center frequencies
• JSR=10 dB unless 

otherwise specified
• Smaller allowable JSR as 

DS-SS Rb increases0 5 10 2015 25

Eb/N0 (dB)

Pb

1

10-2

10-4

10-6

10-8 JSR=-∞ dB

0 dB, Φ=[0, 0]

Φ=[π, π/4]

Φ=[π, 0]

Φ=[0, 0]

Φ=[π/2, π/4]
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Task 1 Results: MLS effect on DS

• DS-SS Pb vs. SNR

0 5 10 15 20 251 .10 9

1 .10 8

1 .10 7

1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

0.10.089

10 9−

PbDS Eb 10, 2108⋅, 2106⋅,( )
PbDS Eb 30, 2108⋅, 2104⋅,( )

PbDS Eb 49−, 2108⋅, 2104⋅,( )

PbDS Eb 20, 2107⋅, 2104⋅,( )

PbDS Eb 25, 2107⋅, 1104⋅,( )

250 Eb

Pb
10-4

10-8

0.01

0.1

10-6

SNR (dB)
0 5 10 15 20 25

JSR=-∞ dB

Rc=20MHz
Rb=10kbps
JSR=25 dB

• Parameters
– JSR=PMLS/PDS
– DS-SS Rc
– DS-SS Rb

1. Rc=200MHz, Rb=2Mbps, 
JSR=10 dB
2. Rc=20MHz, Rb=20kbps, 
JSR=20 dB
3. Rc=200MHz, Rb=20kbps, 
JSR=30 dB


